Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dig Dis Sci ; 69(3): 1035-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282187

RESUMO

BACKGROUND: Liver hepatocellular carcinoma (LIHC) is a serious liver disease worldwide, and its pathogenesis is complicated. AIMS: This study investigated the potential role of FANCA in the advancement and prognosis of LIHC. METHODS: Public databases, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot (WB) and immunohistochemistry (IHC) were employed to measure FANCA expression between tumor and normal samples. The relationship between FANCA expression and prognosis of LIHC patients were examined. Functional enrichment of FANCA-related genes was performed. Furthermore, univariate and multivariate analyses were conducted to determine the independent prognosis value of FANCA in LIHC. Finally, influence of FANCA knockout on the proliferation, migration, and invasion of HepG2 cell was validated with cloning formation, CCK8, and Transwell assays. RESULTS: Expression analysis presented that FANCA had high expression level in LIHC tissues and cells. Receiver operating characteristic (ROC) curve analysis showed that FANCA was of great diagnosis value in LIHC. Clinicopathological analysis revealed that FANCA was significantly greater expressed in the advanced stage than in the early stage of LIHC. Univariate, multivariate, and Kaplan-Meier survival analysis confirmed that high expression of FANCA was strongly associated with poor survival of LIHC patients. In addition, high level of FANCA in LIHC showed a negative association with immunoinfiltrated B cells, T cells, and stromal scores. Moreover, Knockout of FANCA significantly inhibited HepG2 cell proliferative activity, migration, and invasion ability. CONCLUSIONS: Our data revealed that high level of FANCA was closely associated with LIHC malignant progression, suggesting its potential utility as a diagnostic, predictive indicator, and therapeutic target.


Assuntos
Carcinoma Hepatocelular , Anemia de Fanconi , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Western Blotting , Prognóstico , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética
2.
Biochem Genet ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658254

RESUMO

Metabolites are important indicators of cancer and mutations in genes involved in amino acid metabolism may influence tumorigenesis. Immunotherapy is an effective cancer treatment option; however, its relationship with amino acid metabolism has not been reported. In this study, RNA-seq data for 371 liver cancer patients were acquired from TCGA and used as the training set. Data for 231 liver cancer patients were obtained from ICGC and used as the validation set to establish a gene signature for predicting liver cancer overall survival outcomes and immunotherapeutic responses. Four reliable groups based on 132 amino acid metabolism-related DEGs were obtained by consistent clustering of 371 HCC patients and a four-gene signature for prediction of liver cancer survival outcomes was developed. Our data show that in different clinical groups, the overall survival outcomes in the high-risk group were markedly low relative to the low-risk group. Univariate and multivariate analyses revealed that the characteristics of the 4-gene signature were independent prognostic factors for liver cancer. The ROC curve revealed that the risk characteristic is an efficient predictor for 1-, 2-, and 3-year HCC survival outcomes. The GSVA and KEGG pathway analyses revealed that high-risk score tumors were associated with all aspects of the degree of malignancy in liver cancer. There were more mutant genes and greater immune infiltrations in the high-risk groups. Assessment of the three immunotherapeutic cohorts established that low-risk score patients significantly benefited from immunotherapy. Then, we established a prognostic nomogram based on the TCGA cohort. In conclusion, the 4-gene signature is a reliable diagnostic marker and predictor for immunotherapeutic efficacy.

3.
PLoS Genet ; 19(7): e1010867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37523410

RESUMO

Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.


Assuntos
Penicillium , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/genética , Penicillium/genética , Celulose , Arginina
4.
Appl Microbiol Biotechnol ; 105(11): 4675-4691, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34076714

RESUMO

Heterotrimeric-G-protein-mediated signaling pathways modulate the expression of the essential genes in many fundamental cellular processes in fungi at the transcription level. However, these processes remain unclear in Penicillium oxalicum. In this study, we generated knockout and knockout-complemented strains of gng-1 (POX07071) encoding the Gγ protein and found that GNG-1 modulated the expression of genes encoding plant-biomass-degrading enzymes (PBDEs) and sporulation-related activators. Interestingly, GNG-1 affected expression of the cxrB that encodes a known transcription factor required for the expression of major cellulase and xylanase genes. Constitutive overexpression of cxrB in ∆gng-1 circumvented the dependence of PBDE production on GNG-1. Further evidence indicated that CxrB indirectly regulated the transcription levels of key amylase genes by controlling the expression of the regulatory gene amyR. These data extended the diversity of Gγ protein functions and provided new insight into the signal transduction and regulation of PBDE gene expression in filamentous fungi. KEY POINTS: • GNG-1 modulates the expression of PBDE genes and sporulation-related genes. • GNG-1 controls expression of the key regulatory gene cxrB. • Overexpression of cxrB circumvents dependence of PBDE production on GNG-1.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Penicillium , Biomassa , Regulação Fúngica da Expressão Gênica , Penicillium/genética
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119588, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743311

RESUMO

Five diverse 1D supramolecular chains, {[4-pmntd]}n(1), {H2[4-pmntd]•2Br-}n(2), {H2[4-pmntd]•2NO3-}n(3), {H2[4-pmntd]•2ClO4-}n(4), {H2[4-pmntd]•2BF4-}n(5), (where 4-pmntd was N,N'-bis (4-pyridylmethyl)naphthalene diimide) were synthesized and characterized by X-ray single-crystal structure analysis, IR spectroscopy, elemental analyses, thermogravimetric analyses, fluorescence detection. The anions effect construction of their 1D chain structural diversity through different π interactions. Compound 1 through the adjacent pyridine rings parallel π∙∙∙π interactions formed 1D linear chain structure. Compound 2 through Br- anion∙∙∙π interactions and halogenbond interactions formed 1D zigzag chain structure. Compound 3 through lone pair∙∙∙π interactions of naphthalene diimide and the adjacent carboxyl group formed 1D stairway chain structure. Compound 4 through ClO4- anion∙∙∙π interactions formed 1D ribbon chain structure. Compound 5 through parallel π∙∙∙π interactions of the adjacent naphthalene diimide planes and pyridine rings formed 1D ladder chain structure. The five compounds' fluorescence properties and thermal stabilities were investigated. The compound 2 solution could fluorescence detection for iodide anion via fluorescence quenching.

6.
Mol Microbiol ; 116(1): 140-153, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561892

RESUMO

The essential transcription factor PoxCxrA is required for cellulase and xylanase gene expression in the filamentous fungus Penicillium oxalicum that is potentially applied in biotechnological industry as a result of the existence of the integrated cellulolytic and xylolytic system. However, the regulatory mechanism of cellulase and xylanase gene expression specifically associated with PoxCxrA regulation in fungi is poorly understood. In this study, the novel regulator PoxCbh (POX06865), containing a centromere protein B-type helix-turn-helix domain, was identified through screening for the PoxCxrA regulon under Avicel induction and genetic analysis. The mutant ∆PoxCbh showed significant reduction in cellulase and xylanase production, ranging from 28.4% to 59.8%. Furthermore, PoxCbh was found to directly regulate the expression of important cellulase and xylanase genes, as well as the known regulatory genes PoxNsdD and POX02484, and its expression was directly controlled by PoxCxrA. The PoxCbh-binding DNA sequence in the promoter region of the cellobiohydrolase 1 gene cbh1 was identified. These results expand our understanding of the diverse roles of centromere protein B-like protein, the regulatory network of cellulase and xylanase gene expression, and regulatory mechanisms in fungi.


Assuntos
Proteína B de Centrômero/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação Fúngica da Expressão Gênica/genética , Sequências Hélice-Volta-Hélice/genética , Penicillium/genética , Penicillium/metabolismo , Celulase/biossíntese , Celulase/genética , Celulose 1,4-beta-Celobiosidase/genética , Proteína B de Centrômero/biossíntese , Proteínas Cromossômicas não Histona/genética , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/genética , Fatores de Transcrição/genética
7.
Appl Microbiol Biotechnol ; 105(2): 679-694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394158

RESUMO

Phospholipases play vital roles in immune and inflammatory responses in mammals and plants; however, knowledge of phospholipase functions in fungi is limited. In this study, we investigated the effects of deleting predicted phospholipase genes on cellulase and xylanase production, and morphological phenotype, in Penicillium oxalicum. Individual deletion of nine of the ten predicted phospholipase genes resulted in alteration of cellulase and xylanase production, and the morphological phenotypes, to various degrees. The mutant ∆POX07277 lost 22.5 to 82.8% of cellulase (i.e., filter paper cellulase, carboxymethylcellulase, and p-nitrophenyl-ß-cellobiosidase) and xylanase production, whereas p-nitrophenyl-ß-glucopyranosidase production increased by 5.8-127.8 fold. POX07277 (P. oxalicum gene No. 07277) was predicted to encode phospholipase A2 and was found to negatively affect the sporulation of P. oxalicum. Comparative transcriptomic and quantitative reverse transcription-PCR analysis indicated that POX07277 dynamically affected the expression of cellulase and xylanase genes and the regulatory genes for fungal sporulation, under micro-crystalline cellulose induction. POX07277 was required for the expression of the known regulatory gene PoxCxrB (cellulolytic and xylanolytic regulator B in P. oxalicum), which is involved in cellulase and xylanase gene expression in P. oxalicum. Conversely, POX07277 expression was regulated by PoxCxrB. These findings will aid the understanding of phospholipase functions and provide novel insights into the mechanism of fungal cellulase and xylanase gene expression. KEY POINTS : • The roles of phospholipases were investigated in Penicillium oxalicum. • POX07277 (PLA2) is required for the expression of cellulase and xylanase genes. • PoxCxrB dynamically regulated POX07277 expression.


Assuntos
Celulase/biossíntese , Endo-1,4-beta-Xilanases/biossíntese , Penicillium , Fosfolipases/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/enzimologia , Penicillium/genética
8.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604764

RESUMO

Transcriptional regulation of cellulolytic and xylolytic genes in ascomycete fungi is controlled by specific carbon sources in different external environments. Here, comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR), or WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of the differentially expressed genes (DEGs) were involved in metabolism, specifically, carbohydrate metabolism. Of the DEGs, the basic core carbohydrate-active enzyme-encoding genes which responded to the plant biomass resources were identified in P. oxalicum, and their transcriptional levels changed to various extents depending on the different carbon sources. Moreover, this study found that three deletion mutants of genes encoding putative transcription factors showed significant alterations in filter paper cellulase production compared with that of a parental P. oxalicum strain with a deletion of Ku70 (ΔPoxKu70 strain) when grown on WR under SSF. Importantly, the ΔPoxAtf1 mutant (with a deletion of P. oxalicumAtf1, also called POX03016) displayed 46.1 to 183.2% more cellulase and xylanase production than a ΔPoxKu70 mutant after 2 days of growth on WR. RNA sequencing and quantitative reverse transcription-PCR revealed that PoxAtf1 dynamically regulated the expression of major cellulase and xylanase genes under SSF. PoxAtf1 bound to the promoter regions of the key cellulase and xylanase genes in vitro This study provides novel insights into the regulatory mechanism of fungal cellulase and xylanase gene expression under SSF.IMPORTANCE The transition to a more environmentally friendly economy encourages studies involving the high-value-added utilization of lignocellulosic biomass. Solid-state fermentation (SSF), that simulates the natural habitat of soil microorganisms, is used for a variety of applications such as biomass biorefinery. Prior to the current study, our understanding of genome-wide gene expression and of the regulation of gene expression of lignocellulose-degrading enzymes in ascomycete fungi during SSF was limited. Here, we employed RNA sequencing and genetic analyses to investigate transcriptomes of Penicillium oxalicum strain EU2101 cultured on medium containing different carbon sources and to identify and characterize transcription factors for regulating the expression of cellulase and xylanase genes during SSF. The results generated will provide novel insights into genetic engineering of filamentous fungi to further increase enzyme production.


Assuntos
Fator 1 Ativador da Transcrição/metabolismo , Ascomicetos/enzimologia , Ascomicetos/genética , Celulase/genética , Fermentação , Regulação Fúngica da Expressão Gênica , Xilosidases/genética , Ascomicetos/crescimento & desenvolvimento , Biomassa , Celulase/metabolismo , Meios de Cultura/química , DNA Fúngico/genética , Deleção de Genes , Genes Fúngicos/genética , Lignina/metabolismo , Penicillium/enzimologia , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA Fúngico/genética , Microbiologia do Solo , Xilosidases/metabolismo
9.
Biotechnol Biofuels ; 12: 103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164922

RESUMO

BACKGROUND: Solid-state fermentation (SSF) mimics the natural decay environment of soil fungi and can be employed to investigate the production of plant biomass-degrading enzymes. However, knowledge on the transcriptional regulation of fungal genes during SSF remains limited. Herein, transcriptional profiling was performed on the filamentous fungus Penicillium oxalicum strain HP7-1 cultivated in medium containing wheat bran plus rice straw (WR) under SSF (WR_SSF) and submerged fermentation (WR_SmF; control) conditions. Novel key transcription factors (TFs) regulating fungal cellulase and xylanase gene expression during SSF were identified via comparative transcriptomic and genetic analyses. RESULTS: Expression of major cellulase genes was higher under WR_SSF condition than that under WR_SmF, but the expression of genes involved in the citric acid cycle was repressed under WR_SSF condition. Fifty-six candidate regulatory genes for cellulase production were screened out from transcriptomic profiling of P. oxalicum HP7-1 for knockout experiments in the parental strain ∆PoxKu70, resulting in 43 deletion mutants including 18 constructed in the previous studies. Enzyme activity assays revealed 14 novel regulatory genes involved in cellulase production in P. oxalicum during SSF. Remarkably, deletion of the essential regulatory gene PoxMBF1, encoding Multiprotein Bridging Factor 1, resulted in doubled cellulase and xylanase production at 2 days after induction during both SSF and SmF. PoxMBF1 dynamically and differentially regulated transcription of a subset of cellulase and xylanase genes during SSF and SmF, and conferred stress resistance. Importantly, PoxMBF1 bound specifically to the putative promoters of major cellulase and xylanase genes in vitro. CONCLUSIONS: We revealed differential transcriptional regulation of P. oxalicum during SSF and SmF, and identified PoxMBF1, a novel TF that directly regulates cellulase and xylanase gene expression during SSF and SmF. These findings expand our understanding of regulatory mechanisms of cellulase and xylanase gene expression during fungal fermentation.

10.
Biotechnol Biofuels ; 12: 105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073329

RESUMO

BACKGROUND: Soil ascomycete fungi produce plant-biomass-degrading enzymes to facilitate nutrient and energy uptake in response to exogenous stress. This is controlled by a complex signal network, but the regulatory mechanisms are poorly understood. An essential Zn2Cys6 transcription factor (TF) PoxCxrA was identified to be required for cellulase and xylanase production in Penicillium oxalicum. The genome-wide regulon and DNA binding sequences of PoxCxrA were further identified through RNA-Sequencing, DNase I footprinting experiments and in vitro electrophoretic mobility shift assays. Moreover, a minimal DNA-binding domain in PoxCxrA was recognised. RESULTS: A PoxCxrA regulon of 1970 members was identified in P. oxalicum, and it was displayed that PoxCxrA regulated the expression of genes encoding major plant cell wall-degrading enzymes, as well as important cellodextrin and/or glucose transporters. Interestingly, PoxCxrA positively regulated the expression of a known important TF PoxClrB. DNase I footprinting experiments and in vitro electrophoretic mobility shift assays further revealed that PoxCxrA directly bound the promoter regions of PoxClrB and a cellobiohydrolase gene cbh1 (POX05587/Cel7A-2) at different nucleic acid sequences. Remarkably, PoxCxrA autoregulated its own PoxCxrA gene expression. Additionally, a minimal 42-amino-acid PoxCxrA DNA-binding domain was identified. CONCLUSION: PoxCxrA could directly regulate the expression of cellulase genes and the regulatory gene PoxClrB via binding their promoters at different nucleic acid sequences. This work expands the diversity of DNA-binding motifs known to be recognised by Zn2Cys6 TFs, and demonstrates novel regulatory mechanisms of fungal cellulase gene expression.

11.
Front Microbiol ; 10: 2875, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921053

RESUMO

Limited information on transcription factor (TF)-mediated regulation exists for most filamentous fungi, specifically for regulation of the production of plant-biomass-degrading enzymes (PBDEs). The filamentous fungus, Talaromyces pinophilus, can secrete integrative cellulolytic and amylolytic enzymes, suggesting a promising application in biotechnology. In the present study, the regulatory roles of a Zn2Cys6 protein, TP05746, were investigated in T. pinophilus through the use of biochemical, microbiological and omics techniques. Deletion of the gene TP05746 in T. pinophilus led to a 149.6% increase in soluble-starch-degrading enzyme (SSDE) production at day one of soluble starch induction but an approximately 30% decrease at days 2 to 4 compared with the parental strain ΔTpKu70. In contrast, the T. pinophilus mutant ΔTP05746 exhibited a 136.8-240.0% increase in raw-starch-degrading enzyme (RSDE) production, as well as a 90.3 to 519.1% increase in cellulase and xylanase production following induction by culturing on wheat bran plus Avicel, relative to that exhibited by ΔTpKu70. Additionally, the mutant ΔTP05746 exhibited accelerated mycelial growth at the early stage of cultivation and decreased conidiation. Transcriptomic profiling and real-time quantitative reverse transcription-PCR (RT-qPCR) analyses revealed that TP05746 dynamically regulated the expression of genes encoding major PBDEs and their regulatory genes, as well as fungal development-regulated genes. Furthermore, in vitro binding experiments confirmed that TP05746 bound to the promoter regions of the genes described above. These results will contribute to our understanding of the regulatory mechanism of PBDE genes and provide a promising target for genetic engineering for improved PBDE production in filamentous fungi.

12.
Biotechnol Biofuels ; 11: 276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337955

RESUMO

BACKGROUND: Perfect and low cost of fungal amylolytic and cellulolytic enzymes are prerequisite for the industrialization of plant biomass biorefinergy to biofuels. Genetic engineering of fungal strains based on regulatory network of transcriptional factors (TFs) and their targets is an efficient strategy to achieve the above described aim. Talaromyces pinophilus produces integrative amylolytic and cellulolytic enzymes; however, the regulatory mechanism associated with the expression of amylase and cellulase genes in T. pinophilus remains unclear. In this study, we screened for and identified novel TFs regulating amylase and/or cellulase gene expression in T. pinophilus 1-95 through comparative transcriptomic and genetic analyses. RESULTS: Comparative analysis of the transcriptomes from T. pinophilus 1-95 grown on media in the presence and absence of glucose or soluble starch as the sole carbon source screened 33 candidate TF-encoding genes that regulate amylase gene expression. Thirty of the 33 genes were successfully knocked out in the parental strain T. pinophilus ∆TpKu70, with seven of the deletion mutants firstly displaying significant changes in amylase production as compared with the parental strain. Among these, ∆TpRfx1 (TpRfx1: Talaromyces pinophilus Rfx1) showed the most significant decrease (81.5%) in amylase production, as well as a 57.7% reduction in filter paper cellulase production. Real-time quantitative reverse transcription PCR showed that TpRfx1 dynamically regulated the expression of major amylase and cellulase genes during cell growth, and in vitro electrophoretic mobility shift assay revealed that TpRfx1 bound the promoter regions of genes encoding α-amylase (TP04014/Amy13A), glucoamylase (TP09267/Amy15A), cellobiohydrolase (TP09412/cbh1), ß-glucosidase (TP05820/bgl1), and endo-ß-1,4-glucanase (TP08514/eg1). TpRfx1 protein containing a regulatory factor X (RFX) DNA-binding domain belongs to RFX family. CONCLUSION: We identified a novel RFX protein TpRFX1 that directly regulates the expression of amylase and cellulase genes in T. pinophilus, which provides new insights into the regulatory mechanism of fungal amylase and cellulase gene expression.

13.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980558

RESUMO

Soil fungi produce a wide range of chemical compounds and enzymes with potential for applications in medicine and biotechnology. Cellular processes in soil fungi are highly dependent on the regulation under environmentally induced stress, but most of the underlying mechanisms remain unclear. Previous work identified a key GATA-type transcription factor, Penicillium oxalicum NsdD (PoxNsdD; also called POX08415), that regulates the expression of cellulase and xylanase genes in P. oxalicum PoxNsdD shares 57 to 64% identity with the key activator NsdD, involved in asexual development in Aspergillus In the present study, the regulatory roles of PoxNsdD in P. oxalicum were further explored. Comparative transcriptomic profiling revealed that PoxNsdD regulates major genes involved in starch, cellulose, and hemicellulose degradation, as well as conidiation and pigment biosynthesis. Subsequent experiments confirmed that a ΔPoxNsdD strain lost 43.9 to 78.8% of starch-digesting enzyme activity when grown on soluble corn starch, and it produced 54.9 to 146.0% more conidia than the ΔPoxKu70 parental strain. During cultivation, ΔPoxNsdD cultures changed color, from pale orange to brick red, while the ΔPoxKu70 cultures remained bluish white. Real-time quantitative reverse transcription-PCR showed that PoxNsdD dynamically regulated the expression of a glucoamylase gene (POX01356/Amy15A), an α-amylase gene (POX09352/Amy13A), and a regulatory gene (POX03890/amyR), as well as a polyketide synthase gene (POX01430/alb1/wA) for yellow pigment biosynthesis and a conidiation-regulated gene (POX06534/brlA). Moreover, in vitro binding experiments showed that PoxNsdD bound the promoter regions of the above-described genes. This work provides novel insights into the regulatory mechanisms of fungal cellular processes and may assist in genetic engineering of Poxalicum for potential industrial and medical applications.IMPORTANCE Most filamentous fungi produce a vast number of extracellular enzymes that are used commercially for biorefineries of plant biomass to produce biofuels and value-added chemicals, which might promote the transition to a more environmentally friendly economy. The expression of these extracellular enzyme genes is tightly controlled at the transcriptional level, which limits their yields. Hitherto our understanding of the regulation of expression of plant biomass-degrading enzyme genes in filamentous fungi has been rather limited. In the present study, regulatory roles of a key regulator, PoxNsdD, were further explored in the soil fungus Penicillium oxalicum, contributing to the understanding of gene regulation in filamentous fungi and revealing the biotechnological potential of Poxalicum via genetic engineering.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/metabolismo , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Biodegradação Ambiental , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Penicillium/enzimologia , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo
14.
Appl Microbiol Biotechnol ; 102(8): 3739-3753, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29511847

RESUMO

High-mobility group (HMG)-box proteins are involved in chromatin organization in eukaryotes, especially in sex determination and regulation of mitochondrial DNA compaction. Although a novel HMG-box protein, PoxHmbB, had been initially identified to be required for filter paper cellulase activity by Penicillium oxalicum, the biological roles of HMG-box proteins in biomass-degrading enzyme production have not been systematically explored. The P. oxalicum mutant ∆PoxHmbB lost 34.7-86.5% of cellulase (endoglucanase, p-nitrophenyl-ß-cellobiosidase, and p-nitrophenyl-ß-glucopyranosidase) activities and 60.3% of xylanase activity following Avicel induction, whereas it exhibited about onefold increase in amylase activity following soluble corn starch induction. Furthermore, ∆PoxHmbB presented delayed conidiation and hyphae growth. Transcriptomic profiling and real-time quantitative reverse transcription-PCR revealed that PoxHmbB regulated the expression of major genes encoding plant biomass-degrading enzymes such as PoxCel7A-2, PoxCel5B, PoxBgl3A, PoxXyn11B, and PoxGA15A, as well as those involved in conidiation such as PoxBrlA. In vitro binding experiments further confirmed that PoxHmbB directly binds to the promoter regions of these major genes. These results further indicate the diversity of the biological functions of HMG-box proteins and provide a novel and promising engineering target for improving plant biomass-degrading enzyme production in filamentous fungi.


Assuntos
Celulase/biossíntese , Celulase/genética , Proteínas HMGB/metabolismo , Penicillium/enzimologia , Penicillium/genética , Biomassa , Celulase/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Mutação
15.
Biotechnol Biofuels ; 10: 279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201143

RESUMO

BACKGROUND: The transition to a more environmentally friendly economy has prompted studies of modern biorefineries, including the utilization of low-value lignocellulose. The major challenge facing the widespread application of biorefineries is the high cost of enzymes that can efficiently hydrolyze recalcitrant cellulose to sugars. Penicillium oxalicum produces large amounts of plant-cell-wall-degrading enzymes, but their production is tightly controlled by complex regulatory networks, resulting in low yields of the native enzymes. Regulatory genes have been the targets of genetic engineering to improve enzyme production in microorganisms. In this study, we used transcriptomic profiling and genetic analyses to screen for and identify novel key regulators of cellulase and xylanase gene expression in P. oxalicum. RESULTS: A comparative analysis of the transcriptomes of P. oxalicum HP7-1 on different carbon sources, including glucose, wheat bran, and wheat bran plus Avicel, identified 40 candidate genes regulating the expression of cellulolytic enzyme genes. Deletion mutants of 31 candidate genes were constructed in P. oxalicum ∆PoxKu70 and 11 resultant mutants showed significant changes in their filter-paper cellulase production compared with the parental strain ∆PoxKu70. Among these 11 mutants, ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD showed the most significant reduction in the enzyme production (96.8, 75.9, and 58.5%, respectively). Ten of these 11 genes are here reported to be involved in cellulase production for the first time. Further tests revealed that ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD displayed significantly reduced xylanase production, whereas ΔPoxCxrA produced negligible xylanase. Interestingly, ΔPoxCxrB and ΔPoxNsdD showed significantly increased ß-glucosidase production. Real-time quantitative reverse transcription-PCR and an electrophoretic mobility shift assay (EMSA) showed that PoxCxrA, PoxCxrB, and PoxNsdD regulate the expression of one another, but the mode of regulation changes dynamically during the growth of fungal cells in the presence of cellulose. EMSA showed that PoxCxrA, PoxCxrB, and PoxNsdD directly bind the putative promoters of major cellulase and xylanase genes. CONCLUSIONS: We have detected and identified three key new regulatory genes, PoxCxrA, PoxCxrB, and PoxNsdD, that directly and indirectly regulate the expression of cellulase and xylanase genes in P. oxalicum. This study provides novel insights into the regulatory mechanisms of fungal cellulase and xylanase gene expression.

16.
World J Microbiol Biotechnol ; 33(9): 171, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28849313

RESUMO

Talaromyces pinophilus is a promising filamentous fungus for industrial production of biomass-degrading enzymes used in biorefining, and its genome was recently sequenced and reported. However, functional analysis of genes in T. pinophilus is rather limited owing to lack of genetic tools. In this study, a putative TpKu70 encoding the Ku70 homolog involved in the classic non-homologous end-joining pathway was deleted in T. pinophilus 1-95. ΔTpKu70 displayed no apparent defect in vegetative growth and enzyme production, and presented similar sensitivity to benomyl, bleomycin, and UV, when compared with the wild-type T. pinophilus strain 1-95. Seven genes that encode putative transcription factors, including TpAmyR, were successfully knocked out in ΔTpKu70 at 61.5-100% of homologous recombination frequency, which is significantly higher than that noted in the wild-type. Interestingly, ΔTpAmyR produced approximately 20% of amylase secreted by the parent strain ΔTpKu70 in medium containing soluble starch from corn as the sole carbon source. Real-time quantitative reverse transcription PCR showed that TpAmyR positively regulated the expression of genes encoding α-amylase and glucoamylase. Thus, this study provides a useful tool for genetic analysis of T. pinophilus, and identification of a key role for the transcription factor TpAmyR in amylase production in T. pinophilus.


Assuntos
Autoantígeno Ku/genética , Talaromyces/crescimento & desenvolvimento , Fatores de Transcrição/genética , Amilases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Recombinação Homóloga , Talaromyces/enzimologia , Talaromyces/genética , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 7(1): 490, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28352091

RESUMO

Species from the genus Talaromyces produce useful biomass-degrading enzymes and secondary metabolites. However, these enzymes and secondary metabolites are still poorly understood and have not been explored in depth because of a lack of comprehensive genetic information. Here, we report a 36.51-megabase genome assembly of Talaromyces pinophilus strain 1-95, with coverage of nine scaffolds of eight chromosomes with telomeric repeats at their ends and circular mitochondrial DNA. In total, 13,472 protein-coding genes were predicted. Of these, 803 were annotated to encode enzymes that act on carbohydrates, including 39 cellulose-degrading and 24 starch-degrading enzymes. In addition, 68 secondary metabolism gene clusters were identified, mainly including T1 polyketide synthase genes and nonribosomal peptide synthase genes. Comparative genomic analyses revealed that T. pinophilus 1-95 harbors more biomass-degrading enzymes and secondary metabolites than other related filamentous fungi. The prediction of the T. pinophilus 1-95 secretome indicated that approximately 50% of the biomass-degrading enzymes are secreted into the extracellular environment. These results expanded our genetic knowledge of the biomass-degrading enzyme system of T. pinophilus and its biosynthesis of secondary metabolites, facilitating the cultivation of T. pinophilus for high production of useful products.


Assuntos
Biotecnologia , Genoma Fúngico , Genômica , Talaromyces/genética , Biomassa , Biologia Computacional/métodos , Ontologia Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia , Proteólise , Proteoma , Proteômica/métodos , Metabolismo Secundário , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo
18.
Biotechnol Biofuels ; 9: 203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27688806

RESUMO

BACKGROUND: The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and secretomic profiling of P. oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106 were employed to screen for novel regulators of cellulase and xylanase gene expression. RESULTS: The 30.62 Mb P. oxalicum HP7-1 genome was sequenced, and 9834 protein-coding genes were annotated. Re-sequencing of the mutant EU2106 genome identified 274 single nucleotide variations and 12 insertion/deletions. Comparative genomic, transcriptomic and secretomic profiling of HP7-1 and EU2106 revealed four candidate regulators of cellulase and xylanase gene expression. Deletion of these candidate genes and measurement of the enzymatic activity of the resultant mutants confirmed the identity of three regulatory genes. POX02484 and POX08522, encoding a putative Zn(II)2Cys6 DNA-binding domain and forkhead protein, respectively, were found to be novel, while PoxClrB is an ortholog of ClrB, a key transcriptional regulator of cellulolytic enzyme gene expression in filamentous fungi. ΔPOX02484 and ΔPOX08522 mutants exhibited significantly reduced ß-glucosidase activity, increased carboxymethylcellulose cellulase and xylanase activities, and altered transcription level of cellulase and xylanase genes compared with the parent strain ΔPoxKu70, with Avicel as the sole carbon source. CONCLUSIONS: Two novel genes, POX02484 and POX08522, were found and characterized to regulate the expression of cellulase and xylanase genes in P. oxalicum. These findings are important for engineering filamentous fungi to improve cellulase and xylanase production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...